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本日の内容

1. 説明変数と誤差項の相関

2. 操作変数の定義

3. 2段階最小二乗法
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OLS推定量の性質（大標本の場合）
大標本の場合，
▶ 誤差項の（条件なし）期待値は 0

E(u) = 0.
▶ すべての説明変数と誤差項は無相関

Cov(x ji, ui) = 0, j = 1, 2, · · · , k .

の仮定の下で，重回帰モデルの OLS推定量 β̂は一
致性をもつ．

plim
n→∞

β̂ = β.

⇒標本サイズが十分に大きい（観測値数が十分に
多い）とき，重回帰モデルの偏回帰係数の OLS推定
量は真の偏回帰係数に確率収束する．（証明は省略）
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ところが，
▶ 少なくとも 1つの説明変数と誤差項が相関する

Cov(xli, ui) ̸= 0

という場合，モデルの OLS推定量 β̂は一致性をも
たない．

plim
n→∞

β̂ ̸= β.

⇒標本サイズが十分に大きくても（観測値数が十
分に多くても），重回帰モデルの係数の OLS推定量
は真の係数と異なる値（偏った値）に確率収束す
る．（証明は省略）
⇒説明変数と誤差項に相関がある場合，係数を
OLSで推定すると偏り（バイアス）が生じ，正しく
推定できない．
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▶ モデルの誤差項と相関しない変数を外生変数
（exogenous variable）という．

▶ e.g.,ミンサー方程式における就業可能年数など

▶ モデルの誤差項と相関する変数を内生変数
（endogenous variable）という．

▶ e.g.,ミンサー方程式における年収や修学年数

▶ 説明変数に内生変数が含まれることによって
生じるOLS推定量の偏りを内生性バイアス
（endogeneity bias）という．

▶ 内生性バイアスには，欠落変数バイアス，観測誤
差バイアス，同時方程式バイアスなどがある（詳
細な説明は省略）．
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操作変数
内生性バイアスを緩和しつつ，説明変数に内生変数
が含まれている式を推定する方法を考える．
▶ 内生変数である説明変数と相関し，かつ誤差項
と相関しない変数を操作変数（Instrumental
Variable, IV）という．

▶ 操作変数を zi,誤差項を ui とすると，
Cov(zi, ui) = 0かつ Cov(zi, xi) ̸= 0.

▶ 外生変数であれば，「推定式の誤差項と相関し
ない」と考えることができる．
å「内生説明変数と相関する外生変数」が，
操作変数になりうる．

▶ 操作変数は 1個とは限らず，複数個存在する場
合もある．
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操作変数法と 2段階最小二乗法
▶ モデルの説明変数に内生変数が含まれている
場合に操作変数を用いて係数の一致推定を試
みる方法を操作変数法（instrumental variable
method)という．

▶ 内生説明変数を，システムに登場する全ての外
生変数に回帰して内生説明変数の予測値を求
め，それを含む，モデルの全ての説明変数に被
説明変数を回帰する方法を 2段階最小二乗法
（2-Stage Least Squares, 2SLS）という．

▶ 操作変数法の 1つと考えることができる．

▶ 2SLSなどの操作変数法は，観測値数が十分大
きいときに使われる．
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2段階最小二乗法

（yi と）xi が内生変数で，ci と zi が外生変数で，zi
が xi と相関し，かつ ui と相関していない場合，

yi = β0 + βX xi + βCci + ui

を推定する際，2SLSを用いれば，内生性バイアス
を緩和できる．
▶ zi を操作変数として用いる．
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第 1段階
▶ 内生説明変数を，システムに登場する全ての外
生変数に回帰．つまり，

xi = δ0 + δZ zi + δCci︸             ︷︷             ︸
uiと無相関

+ vi︸︷︷︸
uiと相関

をOLSで推定．
▶ zi と ci は外生変数なので定義上，ui と無相関．
▶ δ0は定数項なので変動せず，ui と無相関．

⇒ xi の変動を，ui と無相関な部分と相関する
部分に分割．

▶ xi の予測値 x̂i = δ̂0 + δ̂Z zi + δ̂Cci を求める．
⇒ xi の変動のうち，ui と無相関な部分を抽出．

※ 内生説明変数が複数個あれば，各内生説明変数
に対しこの作業を行う． 9 / 30



第 2段階
▶ 推定したい式の内生説明変数 xi を，第 1段階
で求めた予測値 x̂i に変更した式

yi = β0 + βX x̂i + βCci + ui

をOLSで推定．
▶ x̂i は ui と無相関．

▶ β =

β0
βX
βC

 の 2SLS推定量は，

β̂2SLS = (X̂′X̂)−1X̂′y.
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識別の次数条件
「推定したい式に含まれる内生説明変数の個数」を
Gとし，「推定したい式に含まれない外生変数の個
数」を K とする．
▶ G > Kの場合を過少識別（under-identified）と
いう．

▶ 識別不能ともいう，
▶ 推定できない（操作変数を使わず無理に OLS推定
をするとバイアス発生）．

▶ G = Kの場合をちょうど識別（just-identified）
という．

▶ 2SLSなどで推定できる．
▶ G < Kの場合を過剰識別（over-identified）と
いう．

▶ 2SLSなどで推定できる．

⇒ G ≤ K なら 2SLSなどで推定できる．
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⇓

▶ 識別の次数条件（order condition）は，

G ≤ K .
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操作変数の例

被説明変数 内生説明変数 操作変数

所得 修学年数 最寄り大学までの距離
労働時間 子ども数 最初の 2人の子どもの性別
修学年数 婚外子数 双子の有無
健康状態 検診回数 病院までの距離

子どもの出生児体重 母親の喫煙数 タバコの値段
財の需要量 財の価格 原材料価格
消費 GDP 政府支出
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2SLSにおける決定係数
▶ モデルの説明変数と誤差項に相関がある場合，
決定係数も自由度修正済み決定係数も適切に
定義できない（証明は省略）．

▶ 2SLSを用いる目的
åモデルの説明変数と誤差項に相関がある場
合に，より厳密な係数推定値を得るため
（モデルの当てはまりの良さを高めるためでは
ない．）

⇓
2SLSの第 2段階推定における R2や R̄2は，解釈が
できない．
▶ 参考：Wooldridge, J.M., 2019. Introductory Econometrics: A Modern

Approach. Seventh ed., South-Western, Mason, OH, USA, p.505.
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ミンサー方程式の 2SLS推定
既婚男性 734人のデータを用い，ミンサー方程式

ln incomei = β0 + βYyeduci + βEexperi + βEEexper2
i +ui

▶ incomei :年収（万円）
▶ yeduci :修学年数（年）
▶ experi :就業可能年数（年）
▶ i :個人番号

の説明変数のうち，experi と exper2
i は ui と相関し

ない外生変数であるが，yeduci は ui に含まれる観
測できない要因（個人の能力など）と相関している
可能性があり，ui と相関する内生変数であるとし
て，2SLSで推定することを考える．
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以下の変数を操作変数として用いる．
▶ payeduci :父親の修学年数（年）
▶ sibsi :兄弟姉妹数（人）

どちらも，本人の修学年数と相関するが，本人の能
力（が動かす本人の年収）とは無相関のため，外生
変数であると考えられる．

⇓

推定したい式に含まれる内生説明変数は yeduci の 1
個，推定したい式に含まれない外生変数は payeduci
と sibsi の 2個なので，過剰識別であり，識別の次
数条件を満たす（2SLSで推定できる）．
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gretlでの 2段階最小二乗法
メニューバーから「モデル」→「操作変数法」→
「2段階最小二乗法」と操作し，

▶ 「従属変数」には推定したい式の被説明変
数を，

▶ 「説明変数（回帰変数）」には推定したい式の
右辺に含まれる説明変数（内生変数と外生変数
両）を，

▶ 「操作変数」にはシステムに登場する全ての外
生変数を，

それぞれ選び，標準誤差を設定して「OK」をク
リックすればよい．
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ただし，第 1段階推定（内生説明変数を，システム
に登場する全ての外生変数に回帰）の結果は表示さ
れない．

⇓
第 1段階推定は，メニューバーから「モデル」→
「通常の最小二乗法」と操作し，

▶ 「従属変数」には推定したい式の内生説明変
数を，

▶ 「説明変数（回帰変数）」にはシステムに登場
する全ての外生変数を，

それぞれ選んで結果を出力すればよい．
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例えば，ミンサー方程式の場合は，
▶ 推定したい式の被説明変数

▶ lincome

▶ 推定したい式の右辺に含まれる説明変数
▶ yeduc（内生）
▶ exper（外生）
▶ exper2（外生）

▶ システムに登場する全ての外生変数
▶ payeduc
▶ sibs
▶ exper
▶ exper2
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2SLSでは第 2段階において，内生説明変数そのも
のの代わりに，第 1段階で推定された結果を使った
内生説明変数の予測値を用いている．

⇓

予測値には測定誤差が含まれる．

⇓
それを考慮したうえで係数の標準誤差を求める必要
がある（詳細な説明は省略）．

⇓

gretlでメニューバーから「モデル」→「操作変数法」
→「2段階最小二乗法」と操作して 2SLSを実行す
ると，係数の標準誤差の調整が自動的に行われる．
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第 1段階推定結果
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第 2段階推定結果
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第 1段階推定結果

▶ 父親の修学年数の係数
▶ 0.204426
▶ t 値は 7.64, p値は 6.85 × 10−14.

å仮に「payeducの係数が 0」だとすると，7.64
という t 値は 6.85 × 10−14,つまりほぼ 0%の確率
（1%を下回る確率）でしか出てこない．
å有意水準 1%で，「係数は 0」の H0が棄却され
る（5%や 10%でも棄却される）．
å父親の修学年数は（本人の）修学年数と統計的
に有意に相関している．
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▶ 兄弟姉妹数の係数
▶ −0.234284
▶ t 値は −2.741, p値は 0.0063.

å仮に「sibsの係数が 0」だとすると，−2.741と
いう t 値は 0.63%の確率（1%を下回る確率）でし
か出てこない．
å有意水準 1%で，「係数は 0」の H0が棄却され
る（5%や 10%でも棄却される）．
å兄弟姉妹数は修学年数と統計的に有意に相関し
ている．

⇒「ミンサー方程式に含まれない外生変数」とした
「父親の修学年数」も「兄弟姉妹数」も，「ミンサー
方程式の説明変数に含まれる内生変数」の「（本人
の）修学年数」と統計的に有意に相関している．
⇒「父親の修学年数」も「兄弟姉妹数」も操作変数
として機能している可能性がある（より一般的な判
断方法の説明は省略）．
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第 2段階（ミンサー方程式）推定結果
▶ 修学年数の係数

▶ 0.0699093（符号は正）
▶ t 値は 3.196, p値は 0.0015.

å仮に「yeducの係数が 0」だとすると，3.196と
いう t 値は 0.15%の確率（1%を下回る確率）でし
か出てこない．
å有意水準 1%で，「係数は 0」の H0が棄却され
る（5%や 10%でも棄却される）．
å修学年数は年収と統計的に有意に相関して
いる．

▶ 年収と修学年数についてはログ＝レベル・モデル
の関係．
å就業可能年数（とその 2乗）を一定としたうえ
で，修学年数が 1年長くなると，年収が平均して
6.99093%高くなる傾向がある．
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ミンサー方程式の OLS推定結果
このデータで，ミンサー方程式を OLSで推定した
結果は以下のとおり．
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OLSと 2SLSでの，修学年数の係数推定
値の違い

▶ OLSでは，修学年数の係数は 0.084235なの
で，就業可能年数（とその 2乗）を一定とした
うえで，修学年数が 1年長くなると，年収が平
均して 8.4235%高くなる傾向がある，という
解釈となる.

▶ 2SLSでは，修学年数の係数は 0.0699093なの
で，就業可能年数（とその 2乗）を一定とした
うえで，修学年数が 1年長くなると，年収が平
均して 6.99093%高くなる傾向がある，という
解釈となる.
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⇓

▶ OLSでは修学年数が年収に与える定量的な効
果がやや過大に計測されている可能性がある．

▶ ただし，推定結果の画面より，ハウスマン検定
では「OLS推定値は一致性をもつ」という H0
が有意水準 10%でも棄却されないため，この
場合は 2SLS推定を行う意味がなく，OLS推定
が支持される（詳細な説明は省略）．
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今日のキーワード

外生変数，内生変数，内生性バイアス，操作変数，
操作変数法，2段階最小二乗法，過少識別，ちょう
ど識別，過剰識別，次数条件
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次回までの準備

▶ 今回の講義スライドを読み直す．

▶ 「提出課題 8」に取り組む．

▶ 教科書第 9章第 1節，第 3節～第 4節を読む．
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